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Quantum corrections for the liquid-gas transition of Lennard-Jones particles in two dimensions

S. Haasé,H. L. Frisch? and P. Nielaba
IDepartment of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
°Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
(Received 11 June 2003; published 14 January P004

The quantum corrections in first-order perturbation theory are semiquantitatively reproduced in the low
temperature behavior of the liquid-gas coexistence curve of the simulations—at least for reduced masses down
to m* =50.
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[. INTRODUCTION data point of the phase diagram took about Mbnte Carlo
steps.

The mass effect on the phase diagram of a fluid at tem- The phase diagram is shown in Fig. 1. In Fig. 1 the coex-
peratures below the critical temperature is of great interesistence region is shown for masse$ =10, 50, 100, and in
The phase diagram of two-dimensional Lennard-Jones fluidéhe classical limit. Due to the quantum delocalization the
in mass regions where exchange effects are negligible hgshase transition temperature decreases with smaller particle
only been obtained recentf{t] by path integral Monte Carlo masses and the resulting coexistence region is reduced. The
(PIMC) simulations[2]. By simulation methods the coexist- ordering phenomena can be studied by the order parameter
ence region can be computed quantitatively correctly. In or¢=pj —p; , the difference in densities of the liquid and gas,
der to see how well such quantum effects on the phase dias a function of the temperature, see Fig. 2.
gram can be estimated approximately we have used in
addition a perturbative approach.

Ill. FREE ENERGY AND PERTURBATION THEORY

Il. THE MODEL AND THE SIMULATION In order to compute the phase diagram we approximated

We study the behavior of a Lennard-Jones system in twghe free energy for hard disks in the Percus-Yewiek) or
dimensions at different reduced masses=m/(#%/¢c?).  hypernetted chaitHNC) closure[4-7] and treated quantum
For comparison, for three dimensions a reduced mass dffects in first-order perturbation theok§]

1148 corresponds to argon and 112 to nE2in

In order to compute the phase diagram we use the path
integral Monte Carlo methof2] for particles with massn 1p( ,
interacting with Lennard-Jones potentials. In Réf.Ceper- f=feit WZPE Zf U (r)gus(r)2ardr (1)

. . . . B
ley derived, by comparing the quantum delocalization length
scale at a given temperatufewith the average distance be-
tween particles at a given density an expression for the \ith
degeneracy temperatufg = p#2/mkg , below which effects
due to quantum statistics can be expected. Our fluid density

2

is always below the valup* =po?=1, and with this den-

sity we obtain an upper bound for the degeneracy tempera- fc|=92f u(r)gus(r)2mrdr. 2
ture T =kgTp/e=1/m*. For reduced masses 100 and 50

we investigated the gas-liquid coexistence region for tem-

peratures abov@* =0.3, which is well abovel% , for m* 0.8 ' ‘ o claceical
=10 we show the resulting phase diagram as well for com- O m*=100
parison, neglecting quantum statistics. The Trotter index in T & m*=50

the PIMC simulations has been chosen to be 5, 20, and 75 o _ * m*=10

for the reduced masses 100, 50, and 10, respectively, ap- O . m'E]\
proximating sufficiently well the quantum limit. The number 0.4 me? ’SD D’ o |
of quantum particles was 576, by which a direct comparison * *e Do
with earlier simulations of the phase diagrdB] became o,

possible for the classical case, and good agreement was *

found. The liquid-gas coexistence curve was computed by F

subdividing the simulation box of siZ&X S in subsystems of 0 o ‘ 0z ‘ 08 P

sizeL XL, taking histogram#®, (p) of the densityp in sub-

systems, and mapping the histogram maxima in the density- FIG. 1. Phase diagram for Lennard-Jones particles with reduced
temperature plane. The results for the phase diagram presassesm*=10,50,100, and in the classical limipath integral
sented here are obtained wi8iL=28, a typical run for a Monte Carlo simulations
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FIG. 2. Order parameter vs temperature, PIMC simulations. FIG. 4. Order parameter differencAsp of systems with differ-

ent reduced masses vs temperature. The upper curvEs=a0.3

The hard disk correlation functiogys(r) has been com- correspond to the difference in the order parameters for the classical
puted iteratively in the PY or HNC closure with a referencelimit and m* =50, the lower curve between the classical limit and
system with an effective hard disk diamef&r10] of d(T) m* =100. The results are obtained by fits through the order param-
= [gdr(1—exd —Bu(r)). eter data.

The liquid-gas coexistence region has been computed by
the double-tangent method to the free energy. The resultingimulation data, at higher temperatures, however, the pertur-
phase diagram is shown in Fig. 3. In the low temperaturébation theory overestimates the coexistence region due to the
region we get semiquantitative agreement between the ramolecular field character of the perturbation approach.
sults in the PY approximatiofFig. 3@]; the results in the
HNC approximation are slightly worse due to the fact that
the PY can approximate the hard disk system better. In the
region of the critical temperature howew&ig. 3) both clo- The phase diagram shows interesting mass-dependent
sures cannot obtain the proper shape of the coexistence curgienomena. In particular the coexistence region is shifted to
and the correct critical exponents due to the diverging corresmaller temperatures with decreasing masses. In order to
lation length. analyze to what extent the perturbation theory can estimate

The order parameter is presented in Figs. 2 and 3. At lowhe quantum effects we have computed the phase diagram
temperatures we obtain semiquantitative agreement with thand the order parameter in perturbation theory, taking the
hard disk system with an effective diameter as reference sys-

IV. DISCUSSION

T T T

™ —— P cassea tem. In first-order perturbation theory we obtain surprisingly
0.7 b semiquantitative agreement with simulation data for the co-
. Classical . . .
Tl gpIMC: m'=100 | existence region and the order parameter. Of course this

@ PIMC: m*=50

crude approximation has its limitations. In particular the
critical exponents are the mean-field exponents in contrast to
the exact exponents. Thus close to the critical temperature

0.5

. ; °. | the approximate treatment is not reliable and the_ critica_ll pa-
05 [ VBN rameters are not correct. We do however get semiquantitative

\ 1 agreement for the liquid and gas densities with simulation

oq @osgaososon ™ results at low temperatures. In particular the differences be-
00 02 04 06 08P 10 tween the order parameter values for systems with different
— particle masses are in semiquantitative agreement with the

OT; I TG | simulation results, as shown in Fig. 4. This shows that the
' " @PIMC: dassical main problem is the computation of the proper free energy of

OPIMC: m*=100

epie mso. 1 the reference system, the quantum corrections are treated

05 . | well within first-order perturbation theory, at least for par-
“ ticle masses down ton* =50. If the particle masses are
= [°] o | much smaller, first-order perturbation theory cannot treat the
0.3 . . %e Do A quantum effects correctly, for example, see the phase coex-
RSN istence curve fom* =10 in Fig. 1.
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